

LA-UR-21-28828

Approved for public release; distribution is unlimited.

Effect of Electron Beam Oscillation Figures on Weld Surface Condition and Cross Sectional Morphology Title:

Author(s): Adel, Luke Calvin

Pierce, Stanley W.

Report Intended for:

Issued: 2021-09-07

Effect of Electron Beam Oscillation Figures on Weld Surface Condition and Cross Sectional Morphology

Luke Adel and Stanley Pierce

September 2, 2021

Overview

1. Problem

1. Preliminary experiments showed weld depth and surface condition are not consistent among different oscillation figures

2. Investigation

- 1. Study the circle and concentric circle figures, and directional variants of these
- 2. Measure the effect of frequency on the figure
- 3. Produce beam figures of equal diameter
- 4. Produce welds using equal diameter beam figures
- 5. Correlate weld depth, surface condition, and root defects with the beam figure

Electron Beam Welding

- Welding performed within a high vacuum chamber.
- High voltage (60 kV) drives a narrow beam of electrons at high velocity to imping on the workpiece surface.
- Kinetic energy of the beam produces melting for fusion welding of the workpiece.
- Magnetic fields focus the beam controlling it's size & shape.
- The weld shape and depth is controlled by adjusting beam power, and beam size & shape at the workpiece.
- Power density, (A x V)/Area, is controlled by beam focus or beam deflection.

Focus Current and Beam Oscillation

 There are two ways to achieve an optimal beam size and energy distribution

Defocus Beam

- Under focus: Focal point is below the surface.
- Sharp focus: Focal point is at the surface.
- Over focus: Focal point is above surface.

Beam Oscillation

 The sharp focus beam is oscillated in a pattern such as a circle, figure eight, etc.

Beam Oscillation affects Weld Surface Roughness

- Preliminary experiments with beam oscillation yielded smooth and rough. welds.
 - Roughness varied with figure type and frequency.
 - Welds made on Ta-10W

Roughness varied with figure generation direction and weld travel direction.

Investigation of Beam Oscillation Figures

- Figures included a single circle, 10 concentric circles, and variants in the figure formation sequence
- The digital figures are composed of 1000 discrete beam spots
- Path of figure formation relative to welding direction

Figure Description									
Fig 2	Counter clockwise circle	Weld Direction							
Fig 16	Split circle, alternating halves, top to bottom								
Fig 18	Random order circle								
Fig 6	Counter clockwise concentric circles, outside to inside								
Fig 15	Split concentric circles, alternating halves, top to bottom, outside to ins	ide +							
Fig 17	Random order concentric circles								

Producing Equal Weld Depths with Beam Figures

For comparison of beam figures, welds of equal depth are desirable.

Frequency Effect on Beam Figure Diameter

- As frequency increases, figure diameter decreases and weld depth increases.
- To compare different figures, welds of equal depth are desirable.
- A consistent figure diameter should yield consistent weld depth for the various figures
- Frequency was held constant at 500 and 10 kHz.

Measuring the Beam Figure Diameter

- The beam figure is passed across the slit in the faraday cup at constant velocity
- As the beam traverses the faraday cup, the voltage output of the beam is recorded on an oscilloscope.
- The beam figure diameter is calculated.
 - For this work, the peak to peak width was used

Producing an Equal Beam Figure Diameter

EBW Diameter Setting vs. Actual Diameter

The figure diameter was measured at both 500 and 10k Hz for each figure

The figure diameter setting was determined to yield an actual diameter of 0.8 mm for

welding.

Comparison of Ta-10W and Stainless Steel EBW

Ta-10W

- Very high melting temp (3025°C)
- Requires high power to melt and vaporize, 60mA beam current
- High thermal conductivity, weld cools and solidifies very quickly

Marangoni Flow

Stainless Steel

- Melting temperature ½ Ta-10W (1425°C)
- Requires < 30mA beam current
- Low thermal conductivity, so weld cools and solidifies slowly
- Sulfur level influences surface width due to Marangoni flow

CCW circle at 10k Hz, low sulfur (left) and high sulfur (right)

Welding Parameters

Ta-10W

- 60mA beam current
- Focus current 1933mA
- 19mm weld length
- Weld speed 25.4mm/s
- 18 welds made on 27.43 mm diameter round bar, 20 degrees apart
 - Made two extra defocus welds as experiments
- Calibration value set to 8200

 Welds made 3 at a time, 120 degrees apart, and cooled between sets

Stainless Steel

- 30mA beam current
- Focus current 1936mA
- Weld speed 25.4mm/s
- 26mm weld length
- 16 welds made on flat bars 3.3mm apart
- Calibration value set to 8200
- Welds made 3 at a time, cooled between sets

Weld#1	Weld # 5	Weld # 2	Weld#6
Fig 2	Fig 6	Fig 16(+)	Fig 15(+)
500 Hz	500 Hz	500 Hz	500 Hz
Weld #8	Weld # 4	Weld #7	Weld#3
Fig 17	Fig 18	Fig 15(-)	Fig 16(-)
500 Hz	500 Hz	500 Hz	500 Hz

X Side	
(Back)	

Weld#9	Weld # 13	Weld # 10	Weld # 14
Fig 2	Fig 6	Fig 16(+)	Fig 15(+)
10k Hz	10k Hz	10k Hz	10k Hz
Weld # 16	Weld # 12	Weld # 15	Weld # 11
Fig 17	Fig 18	Fig 15(-)	Fig 16(-)
10k Hz	10k Hz	10k Hz	10k Hz

Welding Results, Surface Rating Ta-10W

	Circle Variants: 2- CCW, 16- Split, 18- Random								Concentric Variants: 6- CCW, 15- Split, 17- Random							
Figure #	2	16(-)	16(+)	18	2	16(-)	16(+)	18	6	15(-)	15(+)	17	6	15(-)	15(+)	17
Frequency (Hz)	500			10k			500			10k						
Weld Depth (mm)	2.6	3.2	3.1	2.4	2.3	2.8	2.8	2.9	2.7	3.3	2.9	2.9	2.8	3.0	2.8	2.9
FWHM Width (mm)	1.2	0.8	0.9	1.2	1.3	1.0	1.1	1.0	1.1	0.8	1.0	1.1	1.1	1.0	1.0	1.0
Surface Width (mm)	2.4	2.5	2.1	2.3	2.1	2.3	2.2	2.3	2.2	2.2	2.2	2.3	2.3	2.4	2.3	2.2
Surface Rating (1-5)	2	3	2	1	4	3	3	1	4	4	4	1	2	1	1	2
									00000							

- Random figures very good at both frequencies
- · Concentric variants very good at high frequency, independent of figure variant
- · Circle variants good at low frequency, independent of figure variants
- Directional figures have greater weld depth than other figures
- · Random figures have consistent surface width across both concentric and circles

Welding Results, Surface Rating

High Sulfur Stainless Steel

- Random figures very good at both frequencies
- All variants best at high frequency
- Direction does not affect surface quality
- Directional figures have highest weld depth; deeper welds are narrower
- Surface width also scales with weld depth

Welding Results, Surface Rating

Low Sulfur Stainless Steel

- Random figures very good at both frequencies
- All variants best at high frequency
- Negative direction is better for all but high frequency concentric variants
- Surface width decreases as weld depth increases

Weld Surface Comparison

Ta-10W High Sulfur Low Sulfur

Ta-10W:

 High melting temperature and thermal conductivity restricts the weld pool/keyhole size and results in a rounded solidification ripple pattern

Stainless Steel:

 Low melting temperature and thermal conductivity results in an elongated weld pool/keyhole and V-shaped solidification ripple pattern

Weld Cross Section Morphology

Ta-10W

• Ta-10W:

- Triangular shape, less nail head
- High melting temperature, only the high energy density core of the beam figure results in melting
- Wider than stainless steel at ½ depth
- Lower surface profile than stainless steel

High Sulfur

Low Sulfur

Stainless Steel:

- More pronounced nail head feature
- Low melting temperature, low energy density perimeter of the beam figure results in melting and forming nail head
- Low sulfur wider at surface due to Marangoni flow

Weld Depth and Width Consistency

- Weld depth and width at ½ depth follow a consistent trend dependent on the beam figure and independent of material type at low frequency
- Directional figures deep and wider, CCW figures shallower and narrower

Root Defects, Circle Figures

- Circumferential welds were made to take radiography samples
- Root defects appear in both Ta-10W and stainless steel welds
- All directional figures have root defects

Primarily the low surface quality welds have root defects

Root Defects, Concentric Figures

- Root defects appear in both Ta-10W and stainless steel welds
- Only directional figures have root defects
- Defects less severe in concentric compared to circles

Sulfur Concentration

Marangoni Fluid Flow

- Low sulfur welds are shallower and wider at surface
- Higher sulfur are narrower and deeper
- Marangoni flow is consistent for every weld, but has a small effect in electron beam keyhole welds

Conclusions

Surface Condition

- Ta-10W welds strongly affected by figures due to high melting temperature, thermal conductivity, and rapid solidification
- Stainless steel less affected because of higher fluid flow and slower solidification
- Random figures at both frequencies have very good surface quality on both materials
- Marangoni effect causes low sulfur stainless to have wider surface than high sulfur
- Stainless steel welds have pronounced nail head feature

Root Defects

- High surface quality welds have no root defects, only concentric directional (-) at high frequency has minimal defects
- Almost all directional figures on Ta-10W and both stainless have root defects, figure formation may cause keyhole instability
- Root defects associated with an unstable keyhole and spiking

Weld Depth

- The trends in weld shape for the various beam figures are consistent in both Ta-10W and stainless steel
- Very good surface quality welds correspond to consistent weld depth for each material
- Directional figures deep and wider
- High sulfur deeper than low sulfur due to Marangoni flow
- Since there is spiking and only one cross section observed, depth measure is not accurate

Figure Recommendation

 For both Ta-10W and stainless steel, random figures at high frequency have very good surface quality and weld roots along with desirable weld depth

